Exponent Rules

Parts

- When a number, variable, or expression is raised to a power, the number, variable, or expression is called the base and the power is called the exponent.

n

What is an Exponent?

- An exponent means that you multiply the base by itself that many times.
- For example

$$
\begin{aligned}
& x^{4}=x \circ x \circ x \circ x \\
& 2^{6}=2 \circ 2 \circ 2 \circ 2 \circ 2 \circ 2=64
\end{aligned}
$$

The Invisible Exponent

- When an expression does not have a visible exponent its exponent is understood to be 1.

Exponent Rule \#1

- When multiplying two expressions with the same base you add their exponents.

$$
b^{n} \cdot b^{m}=b^{n+m}
$$

- For example

$$
x^{2} \cdot x^{4}=x^{2+4}=x^{6}
$$

$2 \cdot 2^{2}=2^{1} \cdot 2^{2}=2^{1+2}=2^{3}=8$

Exponent Rule \#1

$b^{n} \cdot b^{m}=b^{n+m}$

- Try it on your own:

$$
\text { 1. } \begin{aligned}
h^{3} \cdot h^{7} & =h^{3+7}=h^{10} \\
\text { 2. } 3^{2} \cdot 3 & =3^{2+1}=3^{3} \\
& =3 \cdot 3 \cdot 3=27
\end{aligned}
$$

Exponent Rule \#3

- When raising a power to a power you multiply the exponents

$$
\left(b^{n}\right)^{m}=b^{n \cdot m}
$$

- For example

$$
\begin{aligned}
& \left(x^{2}\right)^{4}=x^{2 \cdot 4}=x^{8} \\
& \left(2^{2}\right)^{2}=2^{2 \cdot 2}=2^{4}=16
\end{aligned}
$$

Exponent Rule \#3
 $\left(b^{n}\right)^{m}=b^{n \cdot m}$

- Try it on your own

$$
\begin{aligned}
& \text { 5. }\left(h^{3}\right)^{2}=h^{3 \cdot 2}=h^{6} \\
& \text { 6. }\left(3^{2}\right)^{2}=3^{2 \cdot 2}=3^{4}=81
\end{aligned}
$$

Note

- When using this rule the exponent can not be brought in the parenthesis if there is addition or subtraction

$$
\left(x^{2}+2^{2}\right)^{2} \neq x^{4}+2^{4}
$$

You would have to use FOIL in these cases

Exponent Rule \#4

- When a product is raised to a power, each piece is raised to the power

$$
(a b)^{m}=a^{m} b^{m}
$$

- For example

$$
(x y)^{2}=x^{2} y^{2}
$$

$$
(2 \cdot 5)^{2}=2^{2} \cdot 5^{2}=4 \cdot 25=100
$$

Exponent Rule \#4 $(a b)^{m}=a^{m} b^{m}$

- Try it on your own

$$
\text { 7. }(h k)^{3}=h^{3} k^{3}
$$

$$
\text { 8. }(2 \cdot 3)^{2}=2^{2} \cdot 3^{2}=4 \cdot 9=36
$$

Note

- This rule is for products only. When using this rule the exponent can not be brought in the parenthesis if there is addition or subtraction

$$
(x+2)^{2}
$$

$$
\neq x^{2}+2^{2}
$$

You would have to use FOIL in these cases

Exponent Rule \#6: Zero Exponent

- When anything, except 0 , is raised to the zero power it is 1 .

$$
a^{0}=1(\mathrm{if} a \neq 0)
$$

- For example

$$
\begin{aligned}
x^{0} & =1(\text { if } \mathrm{x} \neq 0) \\
25^{0} & =1
\end{aligned}
$$

Zero Exponent
 $\left.a^{0}=\right]_{(\text {if } a \neq 0)}$

- Try it on your own $11 \cdot h^{0}=\square($ if $\mathrm{h} \neq 0)$

$$
12.1000^{\circ}=1
$$

$$
\text { 13. } 0^{0}=\text { undefineca }
$$

