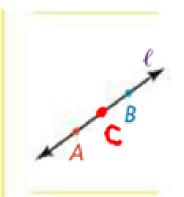

1-2

Points, Lines, and Planes

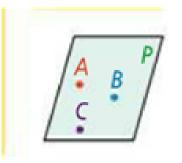
<u>Undefined Geometry Terms</u>: Basic ideas that you can use to build the definitions of all other figures

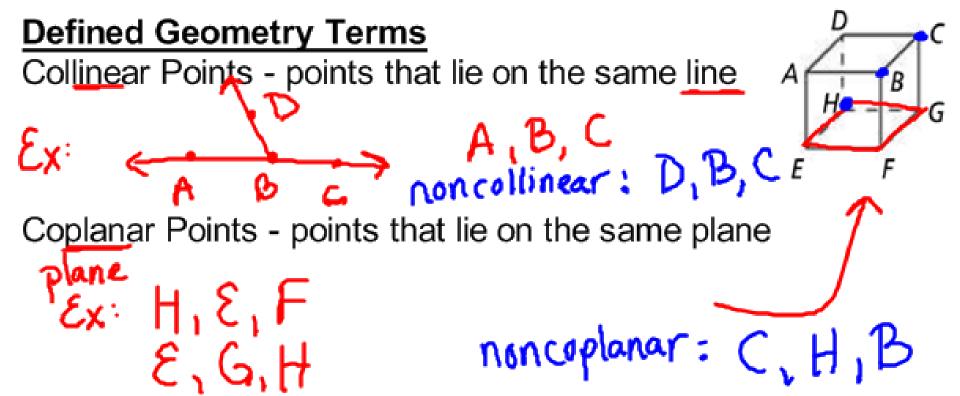
Term Description

A **point** indicates a location and has no size.

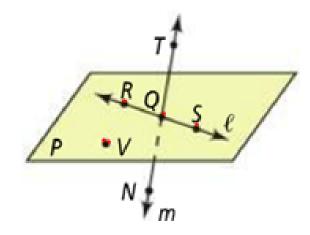

How to Name It

You can represent a point by a dot and name it by a capital letter. such as A.


A line is represented by a straight path that extends in two opposite directions without end and has no thickness. A line contains infinitely many points.


You can name a line by any two points on the line, such as \overrightarrow{AB} (read "line AB") or \overrightarrow{BA} , or by a single lowercase letter, such as line ℓ .

A **plane** is represented by a flat surface that extends without end and has no thickness. A plane contains infinitely many lines.


You can name a plane by a capital letter, such as plane P, or by at least three points in the plane that do not all lie on the same line, such as plane ABC.

Space - the set of all points in three dimensions

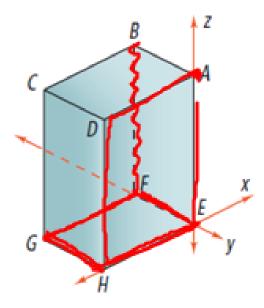
Naming Points, Lines and Planes

M What are two other ways to name QT?

TN

line m

What are two other ways to name plane P?


U VSQ

□ ROV

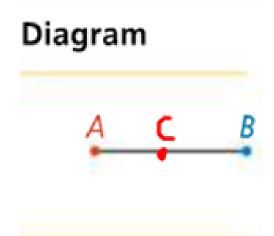
What are the names of three collinear points? What are the names of four coplanar points?

KR, O,S

T, Q, N

Draw a line from each item in Column A to its description in Column B.

Column A	Column B
13. plane HGE	intersection of \overline{AB} and line z
14. BF	plane AEH
15. plane DAE	line through points F and E
16. line <i>y</i>	intersection of planes ABF and CGF
17. point <i>A</i>	plane containing points E , F , and G


Space:

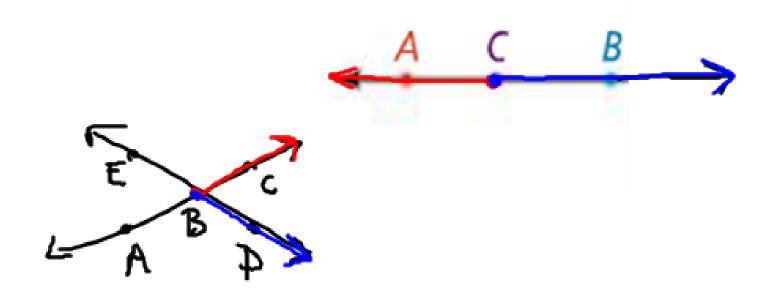
Definition

A **segment** is part of a line that consists of two endpoints and all points between them.

How to Name It

You can name a segment by its two endpoints, such as \overline{AB} (read "segment AB") or \overline{BA} .

A ray is part of a line that
consists of one endpoint and
all the points of the line on
one side of the endpoint.


Goes on forever
in one direction

You can name a ray by its endpoint and another point on the ray, such at \overrightarrow{AB} (read "ray AB"). The order of points indicates the ray's direction.

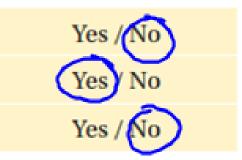
Opposite rays are two rays that share the same endpoint and form a line.

go in complete opp. directions You can name opposite rays by their shared endpoint and any other point on each ray, such as \overrightarrow{CA} and \overrightarrow{CB} .

Problem 2 Naming Segments and Rays

Got lt? Reasoning \overrightarrow{EF} and \overrightarrow{FE} form a line. Are they opposite rays? Explain.

For Exercises 25–29, use the line below.



25. Draw and label points *E* and *F*. Then draw \overrightarrow{EF} in one color and \overrightarrow{FE} in another color.

26. Do \overrightarrow{EF} and \overrightarrow{FE} share an endpoint?

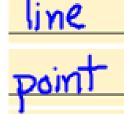
27. Do \overrightarrow{EF} and \overrightarrow{FE} form a line?

28. Are \overrightarrow{EF} and \overrightarrow{FE} opposite rays?

No; not opp-rays blc they do not share the same end pt.

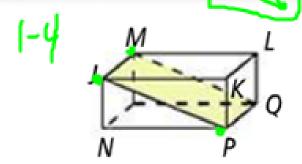
A **postulate** or **axiom** is an <u>accepted statement of fact.</u> Postulates, like undefined terms, are basic building blocks of the logical system in geometry. You will use logical reasoning to prove general concepts in this book.

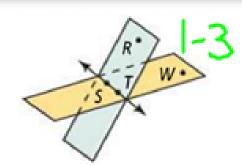
Postulates 1-1, 1-2, 1-3, and 1-4

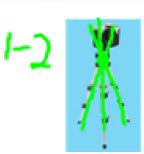

Complete each postulate with line, plane, or point.

Postulate 1-1 Through any two points there is exactly one _?_.

Postulate 1-2 If two distinct lines intersect, then they intersect in exactly one _?_.

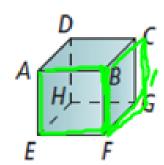

Postulate 1-3 If two distinct planes intersect, then they intersect in exactly one _?_.


Postulate 1-4 Through any three noncollinear points there is exactly one _?_.

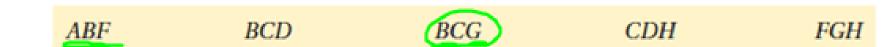


line

Plane



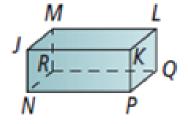
Problem 3 Finding the Intersection of Two Planes


Got lt? Each surface of the box at the right represents part of a plane. What are the names of two planes that intersect in \overrightarrow{BF} ?

30. Circle the points that are on \overrightarrow{BF} or in one of the two planes.

31. Circle another name for plane BFG. Underline another name for plane BFE.

32. Now name two planes that intersect in \overrightarrow{BF} .


CBF CGBF

Problem 4 Using Postulate 1-4

Got lt? What plane contains points L, M, and N? Shade the plane.

33. Use the figure below. Draw \overline{LM} , \overline{LN} , and \overline{MN} as dashed segments. Then shade plane LMN.

Underline the correct word to complete the sentence.

- **34.** \overline{LM} , \overline{LN} , and \overline{MN} form a triangle (rectangle)
- 35. Name the plane.

H/W: 1-2 Worksheet (front and back)