1-2 ## Points, Lines, and Planes ## <u>Undefined Geometry Terms</u>: Basic ideas that you can use to build the definitions of all other figures #### Term Description A **point** indicates a location and has no size. #### How to Name It You can represent a point by a dot and name it by a capital letter. such as A. A line is represented by a straight path that extends in two opposite directions without end and has no thickness. A line contains infinitely many points. You can name a line by any two points on the line, such as \overrightarrow{AB} (read "line AB") or \overrightarrow{BA} , or by a single lowercase letter, such as line ℓ . A **plane** is represented by a flat surface that extends without end and has no thickness. A plane contains infinitely many lines. You can name a plane by a capital letter, such as plane P, or by at least three points in the plane that do not all lie on the same line, such as plane ABC. Space - the set of all points in three dimensions ### Naming Points, Lines and Planes **M** What are two other ways to name QT? TN line m What are two other ways to name plane P? U VSQ □ ROV What are the names of three collinear points? What are the names of four coplanar points? KR, O,S T, Q, N Draw a line from each item in Column A to its description in Column B. | Column A | Column B | |---------------------------|---| | 13. plane HGE | intersection of \overline{AB} and line z | | 14. BF | plane AEH | | 15. plane DAE | line through points F and E | | 16. line <i>y</i> | intersection of planes ABF and CGF | | 17. point <i>A</i> | plane containing points E , F , and G | #### Space: #### Definition A **segment** is part of a line that consists of two endpoints and all points between them. #### How to Name It You can name a segment by its two endpoints, such as \overline{AB} (read "segment AB") or \overline{BA} . A ray is part of a line that consists of one endpoint and all the points of the line on one side of the endpoint. Goes on forever in one direction You can name a ray by its endpoint and another point on the ray, such at \overrightarrow{AB} (read "ray AB"). The order of points indicates the ray's direction. Opposite rays are two rays that share the same endpoint and form a line. go in complete opp. directions You can name opposite rays by their shared endpoint and any other point on each ray, such as \overrightarrow{CA} and \overrightarrow{CB} . ### Problem 2 Naming Segments and Rays **Got lt?** Reasoning \overrightarrow{EF} and \overrightarrow{FE} form a line. Are they opposite rays? Explain. For Exercises 25–29, use the line below. **25.** Draw and label points *E* and *F*. Then draw \overrightarrow{EF} in one color and \overrightarrow{FE} in another color. **26.** Do \overrightarrow{EF} and \overrightarrow{FE} share an endpoint? **27.** Do \overrightarrow{EF} and \overrightarrow{FE} form a line? **28.** Are \overrightarrow{EF} and \overrightarrow{FE} opposite rays? No; not opp-rays blc they do not share the same end pt. A **postulate** or **axiom** is an <u>accepted statement of fact.</u> Postulates, like undefined terms, are basic building blocks of the logical system in geometry. You will use logical reasoning to prove general concepts in this book. #### Postulates 1-1, 1-2, 1-3, and 1-4 Complete each postulate with line, plane, or point. Postulate 1-1 Through any two points there is exactly one _?_. Postulate 1-2 If two distinct lines intersect, then they intersect in exactly one _?_. Postulate 1-3 If two distinct planes intersect, then they intersect in exactly one _?_. Postulate 1-4 Through any three noncollinear points there is exactly one _?_. line Plane #### Problem 3 Finding the Intersection of Two Planes **Got lt?** Each surface of the box at the right represents part of a plane. What are the names of two planes that intersect in \overrightarrow{BF} ? **30.** Circle the points that are on \overrightarrow{BF} or in one of the two planes. 31. Circle another name for plane BFG. Underline another name for plane BFE. **32.** Now name two planes that intersect in \overrightarrow{BF} . CBF CGBF #### Problem 4 Using Postulate 1-4 **Got lt?** What plane contains points L, M, and N? Shade the plane. **33.** Use the figure below. Draw \overline{LM} , \overline{LN} , and \overline{MN} as dashed segments. Then shade plane LMN. Underline the correct word to complete the sentence. - **34.** \overline{LM} , \overline{LN} , and \overline{MN} form a triangle (rectangle) - 35. Name the plane. # H/W: 1-2 Worksheet (front and back)