Valence Electrons

Valence Electrons

- Valence electrons
 - the electrons that are in the highest (outermost) energy level
 - that level is also called the <u>valence</u> shell of the atom
 - they are held <u>most loosely</u>

- The number of valence electrons in an atom determines:
 - The properties of the atom
 - The way that atom will bond chemically
- As a rule, the <u>fewer</u> electrons in the valence shell, the <u>more</u> reactive the element is.
- When an atom has <u>eight</u> electrons in the valence shell, it is <u>stable</u>.

Atoms usually react in a way that

- There are two ways this can happen:
 - The number of valence electrons increases to eight
 - Loosely held valence electrons are given up

Chemical Bonds

- A <u>chemical bond</u> is the force of attraction that holds two atoms together as a result of the rearrangement of electrons between them.
- There are two types of chemical bonds:
 - <u>Ionic</u>
 - Covalent

Valence Electrons by Group

Group #	Group Name	# of valence electrons
1	Alkali Metals	1
2	Alkaline Earth Metals	2
3-12	Transition Metals	1 or 2
13	Boron Group	3
14	Carbon Group	4
15	Nitrogen Group	5
16	Oxygen Group	6
17	Halogens	7
18	Noble Gases	8

Patterns on the Periodic Table

- The number of valence electrons increases as you go across the periodic table.
- When you start each new period, the number of valence electrons drops down to one and begins <u>incr</u>

Drawing Atoms

- When scientists draw atoms to show how they <u>chemically bond</u>, they only draw the <u>valence</u> <u>electrons</u>.
- We only use the valence electrons because those are the only ones involved in chemical bonding.

Electron Dot Diagrams

- Electron Dot Diagrams are drawings that include the chemical symbol for the element surrounded by dots.
- Each dot stands for <u>one valence</u> <u>electron.</u>
- These are also sometimes called Lewis Dot Diagrams.

- All atoms want a <u>full valence shell</u> (because that is how they become stable!)
- So, they will <u>share</u> or <u>transfer</u> electrons with other atoms to achieve stability.
- Negative ions form when atoms gain electrons.
- Positive ions form when atoms lose electrons.

Steps for drawing an Electron Dot Diagram

- 1. Write the element's chemical symbol
- 2. Look on the periodic table to see what group the element is in
- 3. Use the chart in your notes to determine how many valence electrons the element has
- 4. Draw the dots around the chemical symbol starting at the top and moving clockwise around the symbol

Li · Be · B· C

N O F Ne

Try these on your own:

Na Al S Cl

Mg Si Ar P

Electron Configuration: Ions and Excite State

Electron Configuration - Cations

- Cations atoms that lose electrons metals
- Electron Configuration:
 - Magnesium 12 electrons in its neutral state
 - $1s^22s^22p^63s^2$
 - Magnesium ion
 - Loses 2 electrons
 - New configuration: 1s²2s²2p⁶
 - Notice that the electron configuration is the same as the noble gas Neon

Electron Configuration - Anions

- Anions gain electrons non-metals
- Electron Configuration:
 - Chlorine 17 electrons in its neutral state
 - $1s^22s^22p^63s^23p^5$
 - Chlorine ion
 - Gains 1 electron
 - New configuration: 1s²2s²2p⁶3s²3p⁶
 - Notice that the electron configuration is the same as the noble gas Argon
 - This indicates that by gaining 1 electron, it obtains an outer octet (stable valence configuration!)

Electron Configuration

- Both ions obtain a noble gas configuration
- This makes the ion and the noble gas isoelectronic
- Isoelectronic: when two elements and/or ions have the same electronic configurations with one another
- They tend to have similar chemical properties.

Isoelectric Examples

```
• Li^{+1} 1s<sup>2</sup>
```

• Ar
$$1s^2 2s^2 2p^6 3s^2 3p^6$$

Ionic configuration problems

Cations

- Determine the electron configuration for:
- Aluminum Al⁺³

• Calcium – Ca⁺²

• Potassium - K⁺¹

Anions

- Determine the electron configuration for:
- Nitrogen N^{-3}

• Fluorine – F⁻¹

• Oxygen - O⁻²

Excited State Electrons

• When an electron absorbs energy, it jumps to a higher energy level, then drop back down giving off energy in the form of light and heat

Excited State Electrons

• The electron configuration for an excited state electron shows one or more electrons in a higher energy level

Excited State Electrons

- You need to be able to determine an electron in the excited state
- Ex:

Element	Ground State	Excited State
Fluorine	$1s^2 2s^2 2p^5$	$1s^2 2s^2 2p^4 3s^1$
Sodium	$1s^2 2s^2 2p^6 3s^1$	$1s^2 \ 2s^2 \ 2p^6 \ 3p^1$