1. **PERIMETER, CIRCUMFERENCE, AND AREA FORMULAS**

Formulas for the perimeter P, area A, and circumference C of some common plane figures are given below.

Square
- side length s
- \[P = 4s \]
- \[A = s^2 \]

Rectangle
- length l and width w
- \[P = 2(l + w) \]
- \[A = lw \]

Triangle
- side lengths a, b, and c, base b, and height h
- \[P = a + b + c \]
- \[A = \frac{1}{2}bh \]

Circle
- radius r
- \[C = \pi d \]
- \[A = \pi r^2 \]

Pi (π) is the ratio of the circle's circumference to its diameter.

* In terms of π (exact answer) means that π will appear in your answer.

Perimeter = unit

Area = unit 2

\[2(l + w) \]

\[d = 2r \]
EXAMPLE 1
Find the area and the perimeter/circumference of the figure. Leave in terms of π.

A. $P = 42 \text{ m}$
$A = 104 \text{ m}^2$

B. $P = 48 \text{ mm}$
$A = 144 \text{ mm}^2$

C. $P = 60 \text{ in}$
$A = 150 \text{ in}^2$

D. $C = 22\pi \text{ cm}$
$A = 121\pi \text{ cm}^2$
$d = 22$
$r = 11$
EXAMPLE 2
Find the area and the perimeter of the given triangle in the coordinate plane.

\[JL = \sqrt{3^2 + 4^2} = \sqrt{25} = 5 \]

\[KL = \sqrt{5^2 + 4^2} = \sqrt{41} \]

\[P = 8 + 5 + \sqrt{41} \]
\[\approx 13 + \sqrt{41} \]
\[\approx 19.403 \]

2. Area Addition Postulate
- The area of a region is the sum of the areas of its nonoverlapping parts.

EXAMPLE 3
Find the area of the shaded region.

A.
\[I: 3 \times 6 = 18 \]
\[II: 6 \times 6 = 36 \]
\[III: 9 \times 6 = 54 \]
\[\frac{54}{10.8} \]

\[108 \text{ m}^2 \]

B.
Whole - Part
\[18 \times 12 - \frac{3 \times 4}{216 - 12} \]
\[204 \text{ cm}^2 \]
EXAMPLE 4
A restaurant owner wants to put a cement patio behind his restaurant so people can eat outside. The patio will be 16 ft wide and 25 yd long. What will the area of the patio be?

\[16 \text{ ft} \times 75 \text{ ft} = 1200 \text{ ft}^2\]

EXAMPLE 5
Find the area of each circle in terms of \(\pi \).

A. \(r = 9 \text{ in.} \)
 \[81\pi \text{ in}^2\]

B. \(d = 13 \text{ m} \)
 \[r = 6.5 \text{ m} \]
 \[42.25\pi \text{ m}^2\]

C. \(r = 5.8 \text{ ft} \)
 \[33.64\pi \text{ ft}^2\]