PART 1: VOCABULARY

For each of the following terms, write the definition and then draw an example to illustrate it. Be sure to label your diagram appropriately.

1. Opposite rays
 * 2 rays that share a common endpoint and form a line.

2. Midpoint of a segment
 * A point that divides a segment into 2 congruent segments.

3. Linear pair
 * 2 adjacent angles whose noncommon sides are opposite rays (form a line).

4. Adjacent angles
 * 2 coplanar angles with a common side, a common vertex, and no common interior points.

5. Vertical angles
 * 2 angles whose sides are opposite rays.

6. Angle bisector
 * A ray that divides an angle into 2 congruent angles.
PART 2: APPLICATIONS
Use the diagram at the right for #1-4.

1. What are two other names for \overrightarrow{GI}? $\overrightarrow{GI}, \overrightarrow{GH}, \overrightarrow{HI}, \overrightarrow{IH}$

2. Name three collinear points. G, H, I

3. Name two opposite rays. $\overrightarrow{HG}, \overrightarrow{HI}$

4. What is another way to name plane D? Plane GHI (cannot use GHI) (cannot use D)

Sketch the figure described.

5. Three points that are coplanar but not collinear.

6. Two planes that intersect.

Use a ruler to measure the length of the line segment in millimeters, centimeters, and inches.

7. \overrightarrow{AB}

Suppose J is between H and K. Use the Segment Addition Postulate to solve for x. Then find the length of each segment.

8. $HJ = 2x + \frac{1}{3}$
$JK = 5x + \frac{2}{3}$
$KH = 12x - 4$

$\frac{2x + \frac{1}{3}}{5x + \frac{1}{3}} = \frac{12x - 4}{JK}$

7$x + 1 = 12x - 4$

$JK = 5 \frac{2}{3}$
$KH = 8$

Find the distance between each pair of points. If necessary, round to the nearest tenth.

9. $D(1,3), E(-2,4), F(0,-4)$

$DE = \sqrt{3^2 + 1^2} = \sqrt{10}$
$DF = \sqrt{7^2 + 1^2} = \sqrt{50}$
$EF = \sqrt{8^2 + 2^2} = \sqrt{68}$

Use a protractor to measure the angle to the nearest degree. Classify the angle. Then write all names for the angle.

10. $\angle CDP, \angle D, \angle PDC$
In #11-14, complete the constructions.

11. \(\overline{MN} \) with length \(\frac{1}{2} \overline{AB} \)

12. \(\overline{AB} \) with length \(3 \cdot TU \)

13. \(\angle QRS \) with \(2m \angle MAT \)

14. \(\angle R \) such that \(m \angle R = m \angle 1 + m \angle 2 \)

15. Complete the following construction using a compass and straightedge only: \(\overline{QR} \) bisects \(\overline{CD} \) at point \(E \), \(\overline{FG} \) bisects \(\overline{RE} \) at \(H \). Be neat and accurate. Label clearly.

Plot the points in the coordinate plane and sketch \(\angle ABC \). Classify the angle.

16.
- \(A(5, -3) \)
- \(B(-3, -1) \)
- \(C(2, 2) \)
Find the coordinates of the midpoint of a segment with the given endpoints.

17. \(C(-4,-3), D(6,3)\)
 \[
 \frac{-4+k}{2} = \frac{1}{2} = 1 \quad \frac{-3+b}{2} = \frac{0}{2} = 0
 \]
 \((1,0)\)

Find the coordinates of the other endpoint of the segment with the given endpoint and midpoint \(M\).

18. \(A(-4,3), M(-1,-1)\)
 \[
 \frac{x+(-3)}{2} = -1 \quad \frac{y+3}{2} = -1
 \]
 \[
 x+(-3) = -2 \quad y+3 = -2
 \]
 \[
 x = 2 \quad y = -5
 \]
 \((2,-5)\)

19. \(BT\) bisects \(\angle ABC\). Find the value of \(x\). Then find \(m\angle ABT\), \(m\angle TBC\), and \(m\angle ABC\).

 \[
 12x-7 = 5x + 2x \quad 7x = 35
 \]
 \[
 x = 5
 \]

Find the values of the variables.

20. \(\frac{6y+38}{14y-24}\)

21. \(\frac{70}{2x+16}\)

Find the perimeter (or circumference) and area of the figure. Give your answers in exact form.

22. \(p = 8+4+3+4+3\)
 \(p = 20\)

23. \(\frac{3}{4} \cdot 2x+11+11\)
 \(2x+11\) \(\pi\)

24. \(p = 2+6+2+3+4\)
 \(p = 16\)
Find the area of the figure. Give your answers in exact form.

25. \[\text{Area} = 9 \pi \text{ units}^2 \]

26. \[\text{Area} = 12 \text{ units}^2 \]

27. \(BD\) bisects \(\angle ABC\) so that \(m\angle ABD = 2y\) and \(m\angle ABC = 5y - 12\). Draw a picture to represent the situation. What is \(m\angle ABC\)?

\[\begin{align*}
\frac{y}{5} &= 5y - 12 \\
-4y &= -12 \\
y &= 3
\end{align*} \]

\[m\angle ABC = 6y + 12 = 24 \]

28. \(\angle ABC\) and \(\angle CBD\) form a linear pair. \(m\angle ABC = 8x + 12\) and \(m\angle CBD = 2x + 28\). Draw a picture to represent the situation. Find the measure of each angle.

\[\begin{align*}
10x + 40 &= 180 \\
10x &= 140 \\
x &= 14
\end{align*} \]

\[m\angle ABC = 124^\circ \\
m\angle CBD = 56^\circ \]

29. A circle has an area of 121\(\pi\) cm\(^2\). Find its diameter.

\[\begin{align*}
A &= \pi r^2 \\
121\pi &= \pi r^2 \\
r &= 11 \\
d &= 22 \text{ cm}
\end{align*} \]

30. The endpoints of a diameter of a circle are \(Q(4, -2)\) and \(R(3, 6)\). Find the area of the circle in terms of \(\pi\).

\[\begin{align*}
d &= \sqrt{(1)^2 + (8)^2} \\
&= \sqrt{65} \\
r &= \frac{\sqrt{65}}{2} \\
A &= \left(\frac{\sqrt{65}}{2}\right)^2 \pi = \frac{65}{4} \pi = \frac{65}{4} \pi \text{ units}^2
\end{align*} \]

31. A rectangle has a base of \(x\) units. The perimeter is \((6x + 2)\) units. Draw a picture to represent the situation. What is the area of the rectangle in terms of \(x\)?

\[A = x(2x + 1) \]

\[A = 2x^2 + x \]

either answer is acceptable here!